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We show how increasing spatial interaction leads to the merging of coherent 
structures from chaos in some systems of coupled map lattices. This 
phenomenon reflects the arising of new ground states in the corresponding 
model of statistical mechanics. If we further increase the coupling then, new 
ground states appear showing the coexistence of a large-scale coherent structure 
with a small-scale chaotic motion. This allows us to propose a generalization of 
the notion of spatial intermittency. 
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1. Coupled map lattices (CML) were recently introduced in order to 
study spatially extended dynamical systems and are now among the most 
popular objects in nonlinear dynamics. (1'2) 

These systems give us the possibility to study, in a very simple setting, 
different phenomena, for instance, space-time intermittency, spatial bifurca- 
tion (e.g., as it appears in open flows(2)), and spatial patterns of different 
types. (3) 

From a general point of view one of the main problems is certainly the 
construction of the statistical mechanics of systems presenting spatiotem- 
poral complexity, e.g., systems with a large number of excited modes. This 
approach, the so-called thermodynamic formalism, appears to be one of 
the most effective tools to study the statistical properties in the theory of 
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hyperbolic (chaotic) dynamical systems with a finite number of degrees of 
freedom. (4~ This method was applied (1) to some CML with diffusion type 
coupling, i.e., to dynamical systems with infinite degrees of freedom. It was 
proved in ref. 1 that the dynamical system generated by space translation 
and the dynamics has a unique invariant Gibbs measure, provided the 
coupling is small enough. It is also proved in ref. 1 that, with respect to 
that measure, the space and time correlations decay to zero. This property 
corresponds to the absence of phase transition for the corresponding lattice 
model of statistical mechanics at high temperature. 

The hyperbolic dynamical systems which are not spatially distributed 
correspond to one-dimensional statistical mechanics lattice models with 
rapidly decaying interactions, (4) and therefore they do not show phase 
transitions. If we consider CML, then the situation radically changes. These 
dynamical systems have a symbolic representation by a statistical dynami- 
cal model with at least two dimensions, (4~ the space dimension plus the 
dynamical one. Their symbolic representation by a statistical mechanical 
model has at least two dimensions/4~ Therefore, if ref. 1, the conjecture was 
made that by increasing the space interaction in CML, the system can 
undergo a phase transition. 

In this context, the appearence of new ground states can be interpreted 
as the arising of coherent structures from chaos in systems with an infinite 
number of degrees of freedom. In some cases, it is also possible to give a 
reasonable definition of the coherent structures using this interpretation. 

In the present paper we shall discuss the results of our numerical 
experiments giving the evidence for such a conjecture. We have also carried 
out the corresponding analytic proof of these results giving explicit for- 
mulas for the critical values of the parameters in each case. We will analyze 
the situation from this point of view in a future article. (5) 

2. Here, we deal with a lattice of N maps f of the unit interval into 
itself, which are expanding or quadratic. Given the state of the system at 
time n, x ~= (xl")), 1 ~< i<~N, the new state at the time n + 1 is calculated 
according to the following formula: 

xi(n+i) = ( 1 - ~ ) f ( x l " ) ) + ~  [f(xl '~l)+Cix ,+l,J~n (1) 

In the following we only show the case of periodic boundary condi- 
tions, as different boundary conditions do not affect the results in any 
essential way. 

Let us first consider the case of an f with very strong chaotic proper- 
ties, a so-called expanding map, that is, a function f which is pointwise 
smooth with a finite number of singularities only and ]f'(x)] > 2 > 1 for 
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any nonsingular point x in the unit interval (for singular points the same 
inequality is required for left and right derivatives). 

In Fig. 2, we show the result of our numerical computations for the 
following expanding map (similar cases were treated with essentially the 
same results): f is linear in each interval [i/10, i +  1/10], i = 0 ,  1 ..... 9, the 
(see Fig. 1) with 

3 
0 1 2 f ( 3 )  = 4 f (  ) = ~ ,  f ( ~ ) = ~ ,  f ( ~ ) = ~ ,  f + ( 2 ) = ~ ,  

f _ ( 4 ) =  3, f + ( 4 ) =  4 f, f ( l~)  = 3, f _ ( 6 )  1 4  g, f + ( ~ ) =  ~ 

f ( 7 )  = 2, f ( 8 ) =  I, f + ( ~ )  = ~, f ( 9 )  = 4, f ( 1 ) =  

(2) 

where f _  (resp. f + )  stands for the limit from the left (resp. the right) of f. 
In Fig. 2a the ground state for small e is shown, which is unique accor- 

ding to the result proved in ref. 1. Notice that this map is defined in such 
a way that the intervals 11 = [1/5, 2/5] and 12 = [3/5, 4/5] are mapped one 
in the other and, after a transient of one iteration, all the points of [0, 1] 
end up in 11 w I2. Therefore, for e sufficient small, according to ref. 1, there 
is only one absolutely continuous invariant measure with support in 
I1 w 12. The induced measure is mixing with respect to space as well as time 
translations. 

In Fig. 2a we report a typical configuration for such values of e. As for 
e = 0, each point of the lattice jumps from 11 to 12 or vice versa at each time 
iteration. According to the initial conditions we use (see Figs. 2 and 3), half 
of the points (corresponding, say, to odd sites) jump from I1 to I2 and at 

/ ~',, E / \ i 

// \'~ i / \ " / '\\ !/ \ i 
\; 

Fig. 1. The  m a p  f defined in (2). 
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the same  t ime the o the r  half  (even sites) j u m p  f rom f2 to I1. After two 
i t e ra t ions  all the sites r e tu rn  to their  ini t ia l  interval .  

No t i ce  also that ,  for sites sufficiently d i s t an t  f rom one  ano the r ,  the 

c o r r e s p o n d i n g  va lues  of the var iab les  are a lmos t  i n d e p e n d e n t ;  this fact has  

been  tested by  co r re l a t ion  decay,  b u t  we do  n o t  p resen t  here  the corre-  

1 

0 200 
sites 

(a) 

b1 

0 2OO 
sites 

(b) 
Fig. 2. Plot of about 200 iterations after a transient of 100 iterations for the expanding map 
(2) (horizontal axis, 0 ~< i ~< 200; vertical axis, 0 ~< x <~ 1 ): (a) e = 0.2 with initial random condi- 
tions for even points in 11 and odd points in 12. (b) e = 1.0 with initial conditions as in (a). 
(c) e = 1.0 with initial random conditions in 12 u 12. 
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200  
sites 

(c) 

Fig. 2. (Continued) 

sponding data, since they are of the same type as those of the map treated 
below. 

Upon increasing e, the system performs a bifurcation, and two new 
stable solutions appear in the phase space of the system. As it is shown in 
Fig. 2b, these correspond to the situation where all sites xl n) for all odd i's 
(resp. even) move only inside the interval 11 (resp./2). Therefore this bifur- 
cation can be considered as giving rise to a phase synchronization of the 
motion in space: 

But the chaotic ground state still survives (Fig. 2c) for other types of 
initial conditions. 

Figure 3 gives the result of the corresponding numerical experiments 
for the logistic quadratic map: 

f ( x )  = ax(1 - x )  (3) 

with boundary conditions as in the previous case. 
We take the value of the parameter a (a = 3.6...) corresponding to a 

situation for which it is known (6) that the only invariant measure for f is 
concentrated in two disjoint subintervals 11 and 12 of the unit interval. 

Again, for small e there is only one ground state and, as shown in 
Fig. 3a, this corresponds, as in the previous case, to' the jumping of points, 
first from I1 to 12 and then f rom/2  to 11 in all sites of the lattice. Notice 
the important fact that here the position of all the points is such that their 
projections fill each of the two intervals (see also Fig. 3b). 
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W h e n  e is increased ,  a b i fu rca t ion  takes  p lace  at  e ~ 0.884 g iv ing  rise 

to t w o  n e w  s table  solu t ions .  T h e  c o r r e s p o n d i n g  states  of  the  la t t ice  are  

s t and ing  waves  in space  wi th  p e r i o d  two,  w h e n  all  even  po in t s  of  the  la t t ice  

are  fixed at one  level  a n d  all the  o d d  po in t s  at  a n o t h e r  level  (see Fig. 3c). 

These  s t and ing  waves  are  the s imples t  s table  c o h e r e n t  s t ruc tu res  in 

L 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

(a) 

(b) 

Fig. 3. Plot of about 200 iterations after a transient of 100 iterations for the quadratic map, 
(horizontal axis, 0 ~< i ~< 200; vertical axis, 0 ~< x ~< 1): (a) e = 0.88 with initial random condi- 
tions for even points in 11 and odd points in 12. (b) Magnification of 15 sites of (a) for 25 
iterations running after the last iteration of (a). (c) e = 0.884 with initial conditions as in (a). 
(d) e = 0.96 with initial conditions as in (a) (only 20 iterations). 
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Fig. 3. 

(d) 
(Continued) 

space. We are therefore clearly in the presence of the emergence of a 
coherent structure from chaos. 

Upon increasing e again, the corresponding ground states are 
preserved as long as e does not exceed 0.95. At this value, a new bifurcation 
takes place and, instead of the two standing waves described before, two 
other ground states appear. For these values of ~, half of the points stay 
in I1, whereas the remaining points stay in /2 ,  but they are no longer fixed. 
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This corresponds to the coexistence of large-scale standing waves with 
small-scale random motion of the points inside two small intervals, 
J l (e )  c 11 and J2(e) c 12 (see Fig. 3d). Notice that the size of these intervals 
goes to zero as e decreases to the critical value. 

It is therefore natural to consider these ground states as the simplest 
qualitative model for the small-scale turbulent motion inside a motion 
which is regular in a larger scale. Such behavior is apparent in many 
hydrodynamic systems. (7) 

Let us also mention that, for the value of the parameter a for which 
it is known that the invariant measure of the one-dimensional map is 
concentrated in four disjoint intervals, there are also ground states 
corresponding to moving waves of (space) period four. 

Let us now come to the problem of the intermittency in spatially dis- 
tributed systems. Usually one means by this that there exists some partition 
of the physical space of the system so that in some of the domains (the 
elements of the partition) the motion is chaotic and in others it is regular; 
furthermore, it is generally assumed that these domains have more or less 
sharp boundaries. 

Instead, if we have in mind the previous analysis and the fact that, 
at least in some cases, a spatially distributed dynamical system can be 
represented as a statistical mechanical system, and that this system can 
have several ground states, then clearly a more general picture (or notion) 
of space intermittency emerges. In this case, if we take random initial 
condition (the initial configuration of the lattice), then the system can be 
divided at initial time into different parts that (locally) are typical for 
different ground states. The type of motion in each of these domains of the 
lattice will be different. We are therefore in the presence of a regime (at 
least a transient one) in which not only chaotic and regular motion coexist 
in different domains, but also different types of chaotic motion can be 
present. Such flows have been recognized in many hydrodynamic 
experiments; (7) especially for Rayleigh-B6nard convection in the annulus. (8) 

In Fig. 4 we give an example of such an intermittency taken from our 
numerical experiment with the second model, in which we can see different 
regimes occupying regions with a typical intermediate length scale, 
separated by bursts in randomly located sites. 

The corresponding normalized spatial correlation function defined as 

where 

Z-,..j~i ~ i + 2 q  \ / i  

F(q)= <(x(.))2>i - <x(.)) ~ 
(4) 
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is represented in Fig. 4b for the same values of the parameters and initial 
conditions. It shows the independence of the corresponding motion for 
distant sites, even if we are careful in the interpretation of a finite-size 
numerical experiment, since different types of decay of correlations (not 
only exponentials) are expected in the infinite-volume limit. 

11 
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0 640  
s i t e s  

(a) 

; . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 
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0 

\ . ~ / ~ ~ / / ~  

0 40  
s i t e ~  

(b) 
Fig. 4. (a) e = 0.985, initial conditions as in Fig. 2, with 300 configurations for the quadratic 
map, for a lattice of 640 sites. (b) a = 0.985, space correlation function for even points of the 
lattice up to a distance of 45 sites. 
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It can be seen that the structure of this state is very similar to that 
obtained in the experimental situation studied in ref. 8. 

3. In this paper we have shown how increasing spatial interaction 
leads to the merging of  coherent  structures in the configuration space of a 
system of coupled map lattices. 

The new phenomenon  reported here is the following: starting from a 
turbulent state, which is known to exist and to be unique for small coupling 
of this system, simpler structures appear  corresponding to a more  
organized type of mot ion  when the coupling is increased. These simpler 
structures can then be considered as coherent  structures for this system. 

Another  relevant property of the system is the existence of windows in 
the coupling parameter  for the appearence of each type of coherent  
structure. Therefore, this phenomenon  is not  simple freezing due to the 
large value of the coupling, but a special situation where a new ground  
state appears in the system for a given range of the coupling parameter.  
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